
CENTER FOR MATHEMATICAL SCIENCES W NEREMAN ET AL.
AUG 67 CNS-TSR-99-3 DAL3-87-K-9029

U c SIFII
E D F / L2/5 N L

mmhhhhhhh,

_ __A

W 111120

II11IL2 1.8

C MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOARDS-1963-A

%

JoI

*ur~FILE LJ2

rCMS Technical Summary Report #88-3

f% MACSYMA AT CMS. VERSION 309.3

q~t
W. Hereman, Y. Nagel and

J. Strikwerda

VT-

Center for the Mathematical Sciences

University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53705

August 1987

T C
1 J7LECTE

(Received August 7, 1987) APR 154 98

Approved for public release

Distribution unlimited

Sponsored by

U. S. Army Research Office Air Force Office of Scientific Research

P. 0. Box 12211 Bolling AFB

Research Triangle Park Washington, DC 20332

North Carolina 27709

LSS

Accession Fir

GNTIS GA R
DTIC TAB
Unannounced E

UNIVERSITY OF WISCONSIN-MADISON Justif icati o___
CENTER FOR THE MATHEMATICAL SCIENCES

By
MACSYMA AT CMS. VERSION 309.3 Distribution/

W. Hereman, Y. Nagel and J. Strikwerda AvaIlcblflty Cces

Technical Summary Report #88-3 'Dist Sr~ci!
August 1987A 4

L Copy

ABSTRACT -- P... EcT

4

-- This report provides a brief introduction to the use of XACSYNA, a

symbolic manipulation program for mathematics.

The first Chapter outlines invoking Macsyma, running tutorials and demos,

saving transcripts and programs, editing and plotting facilities.

The second Chapter provides 12 examples of Macsyma use. The following

topics are touched upon: factorization, integration, matrix multiplications,

eigenvalue problem, infinite series, recursion definitions and relations,

solving systems of polynomial equations and ODEs.

Some examples in Chapter 2 and the intricate example given in Chapter 3

demonstrate the possibilities of programming in Macsyma. .

AMS (MOS) Subject Classification: 68Q40

Key Words: macsyma, symbolic manipulation, symbolic programming

p
Supported in part by the U. S. Army Research Office under Grant No. DAAL03-87-
K-0028 and the Air Force Office of Scientific Research under Grant No. 85-
0263.

am4.

Contents

1 Introduction
1.1 Invoking Macsyma...1
1.2 Tutorial and Demos 2
1.3 Saving Mlacsyma Output 3

1.3.1 Transcript file. 3
1.3.2 LISP file 4
1.3.3 Combining two transcripts.

1.4 Running Jobs in the Background 5
1.5 Using the "svi" Editor with Macsyma. 5
1.6 Plotting on a Tektronix with Macsyma. 6

2 Examples 7
2.1 Example 1 - polynomial factoring. 7
2.2 Example 2 - repeating a command. 7
2.3 Example 3 - matrix multiplication. 7
2.4 Example 4 - matrix cigenvalues. 8
2.5 Example 5 - infinite sums. 8
2.6 Example 6 - adding and subtracting series. 8
2.7 Example 7 - a bug in macsyma. 9
2.8 Example 8 - checking an equation. 9
2.9 Example 9 - solving systems of equations 10
2.10 Example 10 - Pascal's triangle and recursive definitions 11
2.11 Example 11 - solving ODEs. 11
2.12 Example 12 - programming in Ntacsyvna 12

3 Intricate Example is
3.1 Introduction. 15
3.2 The Korteweg-de Vries Equation. 15
3.3 Macsyma calculations. 16

* **J, * %*4*~ ~ ~ ~ ' 0

MACSYMA AT CMS. VERSION 309.3

W. Hereman, Y. Nagel and J. Strikwerda

Chapter 1

Introduction

Macsyma is a symbolic manipulation language for mathematics written in Lisp. It was originally
developed by the Mathlab group of the MIT Computer Science laboratory. It is now supported and
distributed by Symbolics, Inc. of Cambridge, Massachusettes. It can perform complicated math-
ematical computations involving integration, differentiation and matrix or function manipulations.
It can also plot curves on suitable graphics terminals.

This document is an introductory tutorial to using Macsyma on the CMS Vax 11/780. It is not
intended to be a comprehensive guide or reference. Basic references for Macsyma are:

Vax Unix Macsyma Applications of Macsyma: A Program for
Reference Manual Macsyma to Calculations Computer Algebraic
Version 11 in Applied Mathematics Manipulation
Symbolics, Inc. M.Hussain & B. Noble Naval Underwater Systems
Cambridge, Mass GE Report#83CRD054 Center, Newport, R.I.

The first book is the basic guide to Macsyma. It is available at the MACC documentation center.
It is not a good tutorial although it does contain a list of other references. The other two books
have many examples suitable for learning Macsyma. Some of these examples are quite complicated.

1.1 Invoking Macsyma

To use Macsvma on the CMS VAX you must first log in to the computer (see the System Manager
if you do not have an account). When you first log in you will see the VMS I prompt. The CMS VAX
has Eunice, a unix emulator, as well as the basic VMS operating system. You must run .Macsvma from
Eunice. To enter Eunice, you first type unix or eunice. You will then get the unix prompt - usually
a % or ->. Now type in /usr/maesyma to start macsyma. Macsyma will return the (c) prompt.

8 unix
% /usr/macsyma

As you work through an example, Macsyma prints (en). where "n" is an integer, for user input
lines and (dn) or (en) for its own replies. The (en) lines denote intermediate calculations used
by Macsyma for especially long computations or lists of output. Lines are numbered consecutively
and can be used to recall previous commands or responses. All Macsyma commands must end with
either a S or a ;. Use the I if you don't want a d-line to echo your input or to avoid intermediate
output. Lines enclosed in double quotes or /* ... */ are treated as comments (see Example 12
in Chapter 2). You can include such lines (terminate them with a $) in your Macsyma session to

Supported in part by the U. S. Army Research Office under Grant No.
DAAL03-87-K-0028 and the Air Force Office of Scientific Research under
Grant No. 85-0263.

~ * ~~ '~~d",

remind you of the purpose of the calculation. See the next section for instructions on saving your
output in a transcript file. The percent sign, %, can be used to refer to the last expression. In the
examples, boldface indicates the characters typed in by the user. Normal letters show characters
produced by the computer.

Some special characters are:

%i for the imaginary number,

%e for the base of the natural logarithms,
%pi for 1r,

% refers to expression on previous line
%th(n) refers to expression on nt h previous line
inf for oo.

The Macsyma part command allows you to refer to a part of the nth previous expression (see
the examples in Chapter 2.)

Note that the exponential function with argument x can be typed in two different ways

% e-x
or exp(x)

To exit from Macsyma use quit(;. Ctrl c will force an interrupt. You can then type h to see
what options you have. The most useful ones are reset which returns Macsyma to a c-line and
quit which will make you exit from Macsyma and return to Eunice. Use ctrl c or ctrl y to end a
runaway calculation. Ctrl z will toggle you into or out of LISP.

1.2 Tutorial and Demos

An on-line tutorial for Macsyma is available. To access it, type in /usr/macsyma then

I (cl)primer);

A menu will appear. Typing in the number of an item on the menu will cause a Macsyma script to
appear with appropriate examples and instructions.

Macsyma also has two built-in libraries of examples. The shart library /usr/mac309/share
can be used with the example command. If at any point (after typing in /usr/macsyma you
would like to see how a function can be used, type in example(function) for a brief tutorial. For

instance,
(cn) example(ode2);

will yield a brief introduction (with examples) of the ode2 solver. To read a description of a command,
option, or concept type. e.g. P

(cn) describe(stringout):

will give you a description of the command strtngout. See the list of special forms in the manual
index for other possible commands. This is a list of the .dem files in /usr/mac309/share:

absimp dimen nchrpl rncomb %
antid eigen ode2 sqdnst "S

dblint facexp optmiz submac
delta fourie pfaff trgsmp
differ Irats polsol vect Si

2

The demonstration library /usr/mac309/demo also contains many examples. You can select

demos from this library by typing

(cl)batch("/usr/mac3O9/demo/unction.dem";

or

(cl)demo(" /usr /mac3O9 /demo /function.dem");

The batch command causes Macsyma to run through the demo without stopping (as though
you were looking at a movie). With the demo command. Macsyma will pause after each display
and show an underscore - cursor. Hitting the Return key will cause it to continue. To get a list
of the files in these two directories type Is /usr/mac309/demo or Is /usr/mac309/share from
unix - i.e. at the % prompt.

Here is a list of the .dem files in /usr/mac309/demo:

algfac differ matrix series
algsys difficult mpg short
array ezgcd nalgfc simpl
ball factor newfac sin
begin gen nisimp solder
c2cyl iap pfacto solve
cf int plot specfn
combin laplac poplot subscr
cyl2c legen qpr sum
cyl2s limit radcan taylor
decomp macex ratsimp trace
defint macro ratsub trig
demall maneg2 risch
demtest maneg3 rough
dice mat rpart

1.3 Saving Macsyma Output

You can save your Macsyma output as either a TRANSCRIPT file or a LISP file. The TRANSCRIPT
file contains all the c- and d-lines which appear on your terminal during an interactive session with
Macsyma. The LISP file contains LISP commands generated by Macsyma and can be used to
playback or restart your last interactive session.

1.3.1 Transcript file

To save just the screen output (with displayed equations) do the following, type writefile at the
beginning and closefile at the end of a computation as in the following example

(cm) writefle(foo): - logs to file 'foo"

(cn) closeflleo; - closes log file "foo"

Get out of macsyma. Send "foo" to the printer. "foo" cannot be reloaded to Macsyma. See
section 10-17 of the Macsyma manual. If you type quit(; without doing a closefile(;, a transcript
file will be created and saved in your directory anyway If you forget to create a writefile when you
begin your macsyma session, you can create one at any time.

3

Pr W of V.'&.~ .' ~ *

(cm) writ eflle(foo); logs to file "foo"
(cmn+]) playback(all): - repeats your entire session
(cn) closefileo; - closes log file "foo"

If we type for line (cm-.- 1)
playback (c35,c 39);

Macsyma would only playback lines c35 thru c39. This allows you to be more selective about what
you save.

1.3.2 LISP file

To save LISP commands, suitable for reloading or playing back your session see section 10- 18 of the
Macsyma manual.

Enter various Macsyma commands. At end of session do this:

(cm) zave(soo,ai[I); - saves all Macsyma commands in Lisp
in the file "soo"

(cn) quito; Exit from Macsyma

If you quito; before typing save(soo);, you will not be able to recover the LISP transcript of
your session. To reload the LISP file just re-enter Mlacsyma and issue this as the first command:

(ci) loadfile(soo); -Reloads "soo" Lisp file into Macsyma
(c2) playback(soo); -Recreates your last session with ;Soo,

This is optional. It's not required to do
further computations. See 10-4 in manual

An efficient way to save a single line of output (say the final result of your macsyma computations)
in LISP form is shown in the following example:

(ci) depends(ffv].[x1,x2,x3]):
(c2) f.:(x)'2(x2)(x3) + (xl)*(x2)-2(x3) - (x1)*(x2)*(x3)'2;

(c3) v(f):ddifffxl)diff(fx2),diff(f.x3)I: - v(f) is the gradient of f
(d3) e * e - Macsyma 'a answer is on this line
(c4) stringout(grad.c4): save (c4) in Macsyma file grad
(65) quito; out of macsvma
% /usr/macsyma reenter macsyma
(ci) f~xl + x2'2 + x3'3; declare f
(c2) batch(grad): input definition of grad
(c3) v(f):[difrf lu),diffx2) ,diff(f.x3)): machine returns answer

You can use the stringoit command to save selected c-, d-, or e= lines. The most useful possibilities
are

stringout(fllenam (.ck) saves line (ck)
stringou t(fileno mt.j.ck) saves lines (cj) AL (ck)
stringout(filcnarne,[.k1,) saves lines (ci) thru (ck)

You can examine the contents of grad b ' tvping type grad at the VMIS dollar sign prompt. You
can also import grad into Macsyma via the command batch(grad);

4

1.3.3 Combining two transcripts

Suppose we have saved only the Lisp commands in the file "soo". Now we want to get the displayed
equations. Do this

(0l) writefile(doo):
(c2) ioadfile(soo);
(c3) playback(; don't need to mention soo
(c4) closefileo;
(c5) quito; get out of Macsyma
% lpr doo send "doo" to laser printer

1.4 Running Jobs in the Background

MACSYMA version 309.3. unlike the older version of MACSYMA cannot be called from VMS. This
means that macsyma cannot be run on the VMS batch queues. Instead, you can run a macsyma
job in the background as follows:

1. First, use an editor to create a file, called, say, JUNK. which contains the MACSYMA com-
mands you would have typed at the terminal if you were using MACSYMA interactively. A
sample file might consist of these lines

(cl) writeflle(trash)$
(c2) f(x):= 1/tan(x);
(c3) diff(f(x),x);
(c4) closefileO;
(c5) quit);

2. Notice that JUNK and TRASH are different files. JUNK is a file you create with an editor.
TRASH is the file Macsyma will create to save the output of your program. There are three
possible ways to pipe JUNK into MACSYMA

(a) /usr/macsyrna < junk
This is closest to running the job interactively.

(b) /usr/macsyma < junk. &
This pipes JUNK into MACSYMA and puts it into the background

(c) nice + <PN> /usr/macsyma < junk. &
This pipes JUNK into MACSYMA, puts it into the background,
and assigns it PRIORITY PN. Acceptable choices for PN are
integers in the range 10 thru 20. The higher the number,
the lower the priority; 10 is the default.

1.5 Using the "vi" Editor with Macsyma

The default editor for MACSYMA is TECO. If you wish to use a different editor, say "vi" with

6Macsyma, create a file called MACSYMA.MAC (with edt or vi or any editor you like) which contains
the following lines:

/*-*-Masyma-*-*/

load("ucb//newedit.o"):
editorcom:"vi macsyrna.buf',

- , ...v-~. 'V , - o , % " ,- ' w .%

MACSYMA.MAC is an initialization file for MACSYMA. It must be in your home directory (the
directory you are in when you first log on). Next, type the following VMS command

IS set term/noline-edit

Follow the procedure given above for invoking MACSYMA interactively. Now suppose, that
while I am in macsyma, I type the following at command line (ci):

(cl) absdj;- no <RET>

If I now hit the <ESC> and <RET> keys, I will put this line into the editor, suitable for editing
with vi. If by mistake, I enter LISP, I can type:

to leave MACSYMA altogether or ctrl z to return from LISP to (cn).
If I have gone considerably beyond line (cl) but want to re-edit it to use it again, I would type:

Istring(cl); <ESC> <RET>

and line (cl) will be put back into the buffer. Although this technique will alluw you to edit long
lines, it is better to enter long lines by breaking them up into shorter pieces and combining them
step by step.

1.6 Plotting on a Tektronix with Macsyma

Macsyma will plot on any terminal which emulates a Tektronix 4010 or 4014 terminal. At CMS
some of the Visual 102 graphics terminals do this. IBM PCs with suitable graphics cards, graphics
monitors and Tektronix emulation software can do this also. You must first put your terminal or
PC in Tektronix emulation mode before attempting to plot. Here is an example using the Macsyma
function ploi2

First, put your PC or terminal into Tektronix emulation mode
S Unix
% set term=4014
% /usr/macsyma
(cl) plotmode:tek:
(c2) plot2([x+1,x"2+1],x,-1,1);

6

Chapter 2

Examples

You can try the examples (below) to get an easy introduction to Macsyma

2.1 Example 1 - polynomial factoring

To factor the polynomial z99 -- 1 enter:
(c6) X^99 + 1;
(c2) factor(%);

2.2 Example 2 - repeating a command

(c0) f(x):zz 1/tan(xc);
(c2) integrate(f(x).x);
(c6) f(xj:= x/((x+1)(x-2+1)-2);
(c4) ' 'c)
(65) quito;

Note the use of the two single quotes on line (c4) to repeat the command on line (c2).

2.3 Example 3 -matrix multiplication

Macsyma has two different kinds of matrix products. An asterisk 0 will produce an element-wise
product, while a period e yields a true matrix product. Here is an example

(6i) entermratrix(2,2);
(c 2) M: %;
Macsyma will assign the label mn (or At - Macsyma is case-insensitive to the matrix above
(c3) M*M;
Macsyrna will square each element of the matrixNo
(c4) M**2;
This will yield the same result as line (c3)
(65) M.M;
Macsyma will return the true matrix product
(06) M-2;
This will yield the same result as line (65)

7"

- 'IV V- 3e - * 1 i

2.4 Example 4 - matrix eigenvalues

To find the eigenvalues of the matrix
a1

1)

enter:
(cl) entermatrix(2.2);
Is the matrix 1.Diagonal 2.Symmetric 3.Antisymmetric 4.General
Answer 1, 2, 3, or 4
4;
Row 1 Column 1: 1;
. * * Put in remaining entries. Remember the semicolon!
(c2) eigenvalues(%);

will give you the eigenvalues.

2.5 Example 5 - infinite sums

To evaluate the sum Z-111 z i enter:
(c) assume(abs(x) < 1);
(c2) sum(x'j , j, 0, inf);
(c3) simpsum:true$
(c4) ev(d2,sum);
(c5) forget(abs(x) < 1)$
(c6) ev(d2,sum),
Is abs(x) - 1 positive, negative, or zero?
negative;

(c7) ev(d2,sum);
Is abs(x) - I positive, negative, or zero?%

zero; "V
undefined

(c8) ev(d2.sum);
Is abs(x) - 1 positive, negative, or zero? S
positive;

inf
If you don't put in the assume instruction (line (ci)) you will be queried on the size of z as in

lines (c6) thru (c8).

2.6 Example 6 - adding and subtracting series

This example shows how to add and subtract infinite sums.
(cl) uum(a[k] + b[k].k.O,inf):
(c2) sum(b[k].k.Oinf);
(3) dl - d2;
(c4) simpsum:false;
(c5) intosum(%);

q /'y V ; 5 . %] - . . % 3 .,,

.-

(c6) sumcontract(%);
The simpsum option must be set to false in order for intosum to work properly. Without the
intosum command the sumcontract will not do anything, because of the minus sign in front of the
second sum. If the sums were added then there is no need for the zntosum. For example,

(cl) sum(a[k] - b[k],k,Oinf);
(c2) sum(b[k),k,Oinf);
(c3) dl + d2:
(c4) sumcontract(%);

will produce the same answer as above, i.e. the sum of the ak.

2.7 Example 7 - a bug in macsyma

To evaluate the integral

I dfo X2 +.ta

enter:
(cl) 'integrate(l/(x-2 + a), x,O.inf);
Macsyma will respond by displaying the integral.
(c2) ev(%,integrate,a=l);
will produce the result:
(d2) %pi /2

The use of 'integrate produces the expression of the integral, while using integrate would cause
evaluation of the expression. Continuing this example., we may wish to evaluate the derivative of
(cl) with respect to a.

(03) diff(ela):

(c4) assume(a>O);
(c5) ev(d3:integrate);

Macsyma gives a strange result for this,

.log(-1)

4

If we now type
(c6) lognegint:trueS

Macsyma will return
ir

4a3/2

which has the wrong sign

2.8 Example 8 -checking an equation

This example shows that the polynomials, p,(z), defined by

00
exp(1 Z ZJP(

k=O

satisfy the equation

zp,, (z) = kpk (z) - (k - l)pk. (z).

We will only verify it for k from 0 through 6.

;. .O

(0i) exp((x*s)/(1-s));
(c2) tayIor(%,s,0,6);
(c3) expand(%);
(c4) for i from 0 thru 6 do ali]:ratcoeff(d3,s,i);
note that if we had written instead

for i thru 6 do a[i]:ratcoeff(c3.s,i);
macsyma would accept this command but do only terms I thru 6
(c5) for i from 0 thru 6 do bli]:x~diff(a[iI,x) - i~a[i] +(i-1)*a[i-1];
At this point the command
(c6) for i from 0 thru 6 do ldisplay(b[i]);

will display polynomials but they will not be simplified yet. Use
(c7) for i from 0 thru 6 do b[i]:expand(b[i]);
(c8) for i from 0 thru 6 do Idisplay(b[i]);
to see all the expected zeroes. Note that the command
(c7) for i from 0 thru 6 do expand(b[i]);

would do no good since the result of the ezpand is not kept anywhere. Instead of ezpand one could
also use ratsimp or gfactor

2.9 Example 9 - solving systems of equations

The solve command can be used on systems of linear or polynomial equations in several variables.
To find all complex solutions to z + y + z 2, z 2 + Y 2 + Z2 = 26, z 3 + y 3 + Z 3 38, enter:

(cl) x+y+z= 2 ;
(c2) x*02+y**2+z**2=26;
(c3) x*03+y**3+z* 3 =38"

(c4) solve([d1,d2,d3],[x,y,z]);

(d4) [[x = - 3, y 1, z = 4], Lx = - 3, y = 4, z = 1],

[x = 4, y - 3, z =1, Ex = 4, y =1, z =-3. [x 1. y =-3. z 41,

[x = 1. y = 4, z: - 3)

The brackets indicate the solutions are stored in an array. To remove the first solution enter:
(c5) d4[l];
(d5) [x =-3, y = z = 41
(c6) d511];
(d6) x =-3
(c7) d5[2];
(d) y=

(c8) d5[31;
(dS) 1=4

To obtain parts of an equation or expression use the 'part' command.
For example, enter

(c9) part(d6.1);
(d9) x

(00) part(d6.2);
(dlO) -3

This example is due to Paul Terwilliger

10

2.10 Example 10 - Pascal's triangle and recursive defini-
tions

In this example we generate Pascal's Triangle.
Define the binomial coefficient recursively by

(c0) c(n,k):= if (kc = -1 or k= n+1) then 0 else if
(kc = 0 and n = 0) then 1 else c(n-1.k-1)+c(n-i,k);
(di) c(n, k) IF k = - 1 OR k = n 1 THEN 0
ELSE (IF k =0 AND n = 0 THEN I ELSE c(n - 1, k - 1) + c(n - 1, k))

We may now evaluate any entry in the Triangle, for example
(c2) c(6,3); /* c(6,3) refers to the fourth element of the seventh row
(d2) 20

To print out the first 7 lines of the Triangle, enter
(03) for i :0 thru 6 do (array(line,i),for j:0 thru i do "ieUJ:e(ij),
disp (list array (line)));

/ usr/mac309/maxsrc/arrayv.o being loaded.

11, 2, 1)
[1, 3, 3, 1]

[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 11

[1, 6, 15, 20, 15, 6, 1]
(d0) done

As the variable i above ranged from 0 to 6, Macsyma ran through a procedure that printed out
the ith line of the Triangle. First, an array 'line' was defined, with entries indexed by 0,,.,.Then
as the variable j ranges over these indices, line j j gets assigned the value c(i, j). After the line is filled
its entries are displayed. This example is due to Paul Terwilliger

2.11 Example 11 - solving ODEs

This example shows how Macsyma handles ODEs
Let us first try a second order ODE

(cl) diffeq: x'2*'diff(y,x,2)-3x'diff(y,x)+4*y = 0;
(d 1)

2d__ - + 4 y =0

(c2) ode2(diffeq,y,x);
Batching the file /usr/mac:3O9/share/ode2.iac..
Batching done
(d2)

Y = 2 % loz - %k 1)

Now let Us try a third order ODE
(63) diffeq: x^3'dif (yx,3)-3x'diff(y,x)+3*y = 0;

3 3y _ - + 3y = 0
d23

- z
(c4) ode2(diffeq,yx);

EA-KX-Rwin I V Pin~r-WVV T W

(e4)

3 d
3
3 _ Id

z 3 o z 3

Not a proper differential equation
(d4l) false

Now let us try a first Order ODE
(65) -2'diffjy,x) + 3*xy =sin(x)/x;

(d5)

z 2-d + 3zy =snz

(c6) solril:ode2(%,yx);
(d6)

%c - cos(z)
Z3=

Now we give the initial conditions:
Let us require that for x=ir, y = 0

(c0) icl(solnl,x=%pi,y=O);

(d7)
Y cos(z) + 1

31 3

Here is another example:
(c8) 'diffyx,2) + y*'diff(yx)-3 = 0;

(d8)
d2y (L d 3 =

L2 d.

(c9) soln2:ode2(%,yx);
(d9)

y3 +6%kl z + %k2
6

(dO0) rat simp (ic2 (soln2,x= ,y =0,'diff(yx)=2));
(dlo)

2- 3y
6

(cII) Ibc2(soln2,x=0,y=I,x=1,y=3);
(dlI)

y-l_ oy 3
6 2

2.12 Example 12 - programming in Macsyma

This example shows how to use a file of commands to execute the commands from within macsyma.
We will illustrate this by using the algorithm for testing if a polynomial is a Schur polynomiaL. A

12

Schur polynomial is one which has all of its roots inside the unit circle. An algorithm to test whether
or not a polynomial is a Schur polynomial is as follows. Given a polynomial On(Z) of degree n,

=0

we define &~(z) as

v~(Z) &n= ii

where the bar on the coefficients denotes the complex conjugate. The Polynomial 0,,-,(z) is defined
by

4O (O)On(Z) - &dO)O(z)

The algorithm is based on the fact that OndZ) is a Schur polynomial if and only if IO.(O)l is less than
IJ&(O)l and O,- 1(Z) is a Schur polynomial.

The following rnacsyma instructions have been placed in a file called schur. Comments are given
between the delimiters /* and */.

/ Code for testing for Schur polynomials
the polynomrial must be p
the value of n must be the degree of p
If all the parameters tEuj are nonnegative then
p is a Schur polynomial ~

/* Run by using batch(schur) *
schur: true; /* Initialize schur to true *
while n1 > 0 and schur = true do(

display(xs),
for i fromn 0 thru n do aafi]:ratcoef(p,z,i),
/* Compute the check on the product of roots. /
XO: realpart(aa[0]),
yO: iznagpart(aa[0]),
Xn: realpart(aa[n]),
yn: imnagpart(aa[n]),
t[n): xn' 2 + yn^ 2 -x0^ 2 -yO' 2,
ldisplay(t[n]).
if t~n] <= 0 then schur: false
r: sum(aa[n-i]*z i i,O,ri), /* r is the "reverse" polynomial of p .
q: subst(.%i,%i.r), /*q is the tilde of p, 0/
bb[O]: ratcoef(q,zO),
r: bb[O]*p - aa[0O*q,
1: rathimnp(r),
p: ratsimp(r/z),
Idisplay(p),
n: U-1

/ end of while loop/
ldisplay(schur);.

This set of commands illustrates the use of the 'while loop' and the 'for loops.' Note that the
commands within the loops end with a comma.

As an example of how to use this file we consider the three polynomials

(7 + 2i) 22 _ (g _ i)Z - 1.

13

22z3 - 20z' 2 - 3z +1,

and
(22 + i)Z3 - (20- i) 2

2 - 3z + 1.

We enter the polynomial and its degree and then call the file as follows.
(cl) p: (7+2*%i)z-2 -(8-%i)*z +1;
(c2) n: 28
(c3) batch(schur);
The use of the $ at the end of (c2) supresses the display of the value of n on the screen. The

command in (c3) causes the file schur to be read and the executed. The file is also listed before it
is executed. The final value of the logical variable schur will be displayed. (In this case it is true.)
Next we enter the second polynomial.

(cil) p: 22*z3 -20*z'2 -3*z +1;
(c12) n: 38
(c13) batch(schur):
Again the commands in the file will be executed, and in this case the polynomial is not a Schur

polynomial. (I is a root.) Finally, we enter the third polynomial.
(c21) p: (22 +%i)*z-3 -(20-%i)*s2- -3*z +1;
(c22) n: 3$
(c23) batch(schur):
Again the commands in the file will be executed, and in this case the polynomial is a Schur

polynomial.

N'

14

Chapter 3

Intricate Example

The Painlevi Property
Ref: J. Weiss, J. Math Phys., 24(6), June 1983, 1405

3.1 Introduction

We say that a partial differential equation has the Painlevi property when the solutions of the
pde are "single-valued" about the movable, singularity manifold. To be precise, if the singularity
manifold is determined by

g(--1, ,) = 0 (3.1)

and f = f(zl, ... ,z,.) is a solution of the partial differential equation, then we assume that

f = 9, FZ U g' (3.2)
3=0

where

g = 0(z1 ,..,z.), U, = U!(z 1 ,..,.), so ? 0.

are analytic functions of(z, in a neighborhood of the manifold (3. 1) and a is an integer. Substitution

of (3.2) into the partial differential equation determines the value(s) of a and defines the recursion
relations for u ,j = 0,1,2..... Vhen the ansatz (3.2) is correct, the pde is said to possess the
Painlevi property and is conjectured to be integrable.

3.2 The Korteweg-de Vries Equation

The KdV equation
f, t- f f.-,- bf.,. -= 0, b E IR (3.3)

possesses the Painlevi property. The expansion about the singular manifold has the form

It is found that the uresonances" occur at

1(3.5)

Resonances are those values of j at which it is possible to introduce arbitrary functions into the
expansion (3.4). For each nontrivial resonance there occurs a compatibility condition that must be
satisfied if the solution is to have a single-valued expansion. The resonance at 2i = -I corresponds
to the "arbitrary" function g defining the singular manifold (3.3). The compatability conditions at

= 4 and 6 are satisfied identically.
From the recursion relations, we find:

g=2: uo =-12b (3.6)
=1: u= 12bg..; (3.7)

S=2: ggt + g2 u2 + 4bg.g 222 - 3bg 2 = 0(3.8)

= 3: gzt + gzu 2 - gU 3 - bg.. = 0; (3.9)
S= 4: compatibility condition :a (gzt + bg,=== + g,,U2 -!U3) 0. (3.10)

By (3.9) the compatibility condition (3.10) is satisfied identically. The compatibility condition
at j = 6 is also satisfied identically and the KdV equation is thus shown to be Painleve.

3.3 Macsyma calculations

We want to carry out the Painlevi test for the Korteweg-de Vries equation. Here is our Macsyma
session. We have used S to suppress long expressions in the paper. The user should use a semicolon

instead to see the results.
(c1) writ efile(painlevet est) $

Let us first declare the dependencies of some functions. We will use
(c2) depends([f,gpdlt,pd lx.pd3x,kdv,reco,rec 1,rec2,rec3,rec4],[t,x])I

We define f to be the following finite sum
(03) f~g**-2*'sum(uj(t,x)*g**j,j, 0, n);

(d3)

II

Let us calculate the following partial derivatives of this expression
(c4) pdlt:diff(f.t.1)$
(c5) pdlx:diff(f,x.1)$
(c6) pd3x:diff(fx,3)$

Now we add these terms in accordance with the left-hand side of the KdV equation
(c7) kdv : pdlt + fpdlx + b~pd3x$

The nonlinear term involves the product f"(df/dx). We want all products of sums to be converted
in nested double sums. therefore we set

(c8) sumexpand:truel
(c9) gfactor(kdv)$

Note that the computer returns nested sums as requested.
There is a common denominator, g5 , which we remove by

(CIO) % * g**5 $
Let us put factors, such as powers of g, inside the summations by setting

(c1I) intosum(%)$
We have to choose a fixed value for n, for our purpose n = 6 suffices

16

(612) n:6
(c13) ev(dll,sum)$

We calculate the coefficient of the term in go, and factor the result
(014) fActor(ratcoef(d13,g,O));
(d 14)

-2-uo(f, x)(uo(t, z) + 2(g)
dz dz

(c15) cf-inpart(%,[l,2,3]);
(dl 5)

- 2!- UO(t, Z)
dz

(c16) recOAd14/cf;
(d1 6)

We solve for ISo

(c17) (-l)*part(%,2)$
(c18) u[O](t,x) d17$
(c19) u[O](t,x)
(d 19)

-12b(!!)2

Calculating the coefficent of g', substituting for ito and factoring gives
(c20) factor(ev(ratcoef(dl 3,g,l).diff));
(d20)

(c21) cf : inpart(%,[1,2,3j1
(M2) reel : d20/cf$
(cM) (-l)*part(%.2)$
(c24) ull](t.x) :d23$
(c25) u~l](t,x);

12b 8)

d 2

2 2

Calculating the coefficient of g. substituting it 0 and u1 and factoring yields
(c26) factor(ev (rat coef(d I3,g.2),diff))SI
(M2) cf : inpart(%4j1,2,3])$
(M2) rec2 :d26/cfl

From this we construct U2 by taking parts, etc.
(c29) inpart(%.allbut(4))S
(030) (.l)(%)/diff(g,x,l)**2 I

17

(c3l) u[2=(tx) d3OS
(c32) u[2](tx);
(d32)

-494!+ 3b(4!) 4
dz d& dz 4,

Calculating the coefficient of g2 , inserting uo, ul and u2 and factoring yields:
(c33) factor(ev(ratcoeff(d13,g,3),diff));
(d33)

dg4 dg 2 d dgdgdg ,d 2g dgdgrdg d2g d g 2 dg12b(() U3(fZ) - b(d) 4 b -g - 3 b -g) 3-

1dz)3(b dz) dz 4 bdzdZ2 Z3 dZ2) dt dz2dz dtdz)d)/

This expression is presumably equivalent to the recursion relation (3.9) for j = 3 in the introduction.
Lt us verify this by doing the following steps:

(c34) d33/(12"b*diff(g,x,1))S
(c35) expand((-1)*(%))l
(c36) combine(%)$
(c37) u[2](t,x)S

(c38) factor(part(d36,[3,4]))$
(c39) ratsubst(u2,d37,d38);
(d39)

d2g

(c40) rec3 : part(d36,[1,2,5]) + d39;
(d40)

d2g 2dg d4g d2g~-ul2 (a) t(t,Z) + b- did

(c41) u2 : u[2](t.x)$
(c42) eqrec3 : factor(ev(d40))I

This is indeed the same as e;,pressing (d33) after division by (-12b)
Let us construct u3

(c43) (- 1)*(%) *diff(g,x,1)* *25

(c44) inpart(%,allbut(6))S
Note: for the computer the first term in (d43) is labelled as the sixth one!

(c45) u[3](t,x) := (-1)*(d44)/diff(gjx,I)**45
(c46) n[3](t,x):

(d46)

b(ld--, -4b - 41 e - 3b(_ 414 1. (
dadzd Ie 4 dt" dt 4,

(~4

Finally, we verify that the coefcient of g 4 is now identically zero, after all the substitutions and
simplifications (compatibility condition)

(c47) eqrec4 : factor(ev(ratcoef(dl3,g,4),diff));
(d47) 0

18

BINGO! This last calculation took INACSYNIA about 6 minutes. One could go on with this proce-

dure to calculate rec5 and then test the compatibility for rec6 (i.e. eqrec6 0) but this has not -

been carried out here. Here is a summary of the results so far:

(c48) recOl
(c49) reclS
(c6O) rec2S
(c5 1) rec3S
(c52) eqrec3S
(c53) eqrec4$
(c54) u[O](t,x)S f

(c55) U[l](t,x)s
(c56) u[21(t,x)S
(c57) u[3](t,x)S
(c58) save (painlevet estlisp,all) I
(c59) closefileo$

40m

KmAM

f//fIF~h

